
 TRS-80 Level II ZBUG.1.

Southern Software, PO Box 39, Eastleigh, Hants. SO5 5WQ.

ZBUG

 ZBUG enables you to trace through any Z80 machine language program in a
controlled manner. You can initiate the trace in two ways:-

 1) Branch to ZBUG, then branch to the program start address using the
 ZBUG JUMP command. If ZBUG is loaded at address A, and your program
 starts at address abcd (in hexadecimal), then you type
 SYSTEM (enter)
 *? / A (enter) (A is in decimal)
 ZBUG J abcd (enter) (abcd is in hexadecimal)

 2) Call ZBUG from your running program at the point at which you want
 tracing to start. ZBUG will reset your call stack and commence
 tracing from the instruction following the call to ZBUG.

Instruction Trace

 ZBUG is set up by default to trace every instruction. For each Z80
instruction it displays a line of information on the screen and then pauses.
If you hit any key other than 'Z' it will continue to the next instruction
and will display the next line automatically.
 The information displayed at each trace point is:

LL iiiiii oooo-> nnnn ssss hhll ddee bbcc aaff xxxx yyyy
where all values, except LL, are in hex.

LL is an optional mnemonic character pair, a'label', which identifies the trace
point. (See the STOP command).

iiiiii is the last executed instruction, (2 to 8 hex digits).
oooo is the old program counter, before execution of the instruction.
nnnn is the new program counter, after execution of the instruction.
ssss is the value of the stack pointer, SP.
hhll is the value of HL.
ddee is the value of DE.
bbcc is the value of BC.
aaff is the value of AF (A is the accumulator, F is the flags).
xxxx is the value of index register IX.
yyyy is the value of index register IY.

Selective Trace

 ZBUG contains a print selector at byte A + 2, where A is the address at
which ZBUG is loaded. The bits in the print selector are interpreted as follows:

 X '80' Trace every instruction.
 X '01' Trace successful CALL s , RETURN s and RESTART s.
 X '02' Trace computed branches (E9, DDE9, FDE9)
 X '04' Trace successful branch-to-address instructions.
 X '08' Trace successful relative branches.
 X '10' Trace each execution of the important storage access
 instructions , 22, 2A, 32 and 3A.

 Any combination of bits is permissable, but X '80' subsumes all the others.

 TRS-80 Level II ZBUG.2.

Southern Software, PO Box 39, Eastleigh, Hants. SO5 5WQ.

Mnemonic Address Stop

 Using the stop command (see later) you can build up a table of addresses
at which you want execution to pause. If you set the print selector to X '00'
then these will be the only trace points displayed. The trace is controlled by
a table which starts at A+ 047C (hex). Each table entry is 4 bytes long, being
the 2-byte address at which you want execution to pause, and a 2-byte character-
pair label, which is displayed at the left of the trace line, to identify the
point. The table is at the end of ZBUG and can be as long as you like, provided
you leave the necessary free memory. The table end is recognised as a 'zero'
address. The trace point must be on an instruction boundary, and the trace
display
shows the machine state after execution of that instruction.

Trace Suspension

 The preceding options have described how you can control the amount of
trace information displayed. You can also suspend tracing altogether, across
well-behaved CALLS. The called routine will then run at full speed, without
interference from ZBUG, until it returns. The return point will be in ZBUG
itself, so the called routine must not use the stack return point improperly.

 a) Byte A + 3 (where A is the starting address of ZBUG) is the
 invocation depth limit , initially set to 128.
 If you set this to n , then ZBUG will only trace to depth n , i.e. the
 top n+1 levels of your program. All the time the depth of nesting of
 calls excedes n, tracing will be suspended. The untraced call is
 marked on the display with '*'.

 b) Bytes A + 4 and A + 5 contain the interpretation address limit,
 initially set to 4200 hex. ZBUG suspends tracing on any calls below
 this address. If you dont modify this address, then its effect is to
 inhibit tracing of any calls your program may make to TRS ROM routines.
 This is normally what you want. If you reduce the value of this address,
 or set it to zero , then ZBUG will trace your calls to ROM, and you can,
 if you wish, single-step through ROM to see how the BASIC routines work.
 (However if you trace the input/output routines at 0033, 002B, or 0361,
 then your traced program will not work, since ZBUG itself uses these
 routines).

ZBUG Commands

 Program flow pauses at each trace point, and it will continue automatically
to the next trace point if you hit any key other than 'Z'. Hitting 'Z' takes
you into ZBUG command mode. The word 'ZBUG' is displayed and ZBUG waits for
your input. This is also the default mode, when you first invoke ZBUG. You can
exit from command mode and continue tracing by hitting the ENTER key. The com-
mands are as follows, where abcd is taken to represent a hexadecimal address.
If you key in an error, ZBUG displays a ? and gives you a second attempt.

 TRS-80 Level II ZBUG.3.

Southern Software, PO Box 39, Eastleigh, Hants. SO5 5WQ.

H abcd Hexadecimal display of memory. 256 bytes of memory are
 displayed on the screen, starting at address abcd.
 The presentation is 16 'Lines where each line is
 1. Hex address on the left.
 2. 16 bytes of memory displayed as 4 blocks of 8 hexadecimal
 digits.
 3. The same 16 bytes of memory displayed as 16 characters.
 (Characters are folded to the range 0-128, and then
 non-displayable characters are shown as decimal points).
 The display fills the screen. You can now type:
 C (Continue). Display the next 256 bytes of memory
 B (Back). Display the preceding 256 bytes of memory
 Enter key. Return to ZBUG command mode.
M abcd Memory display / modify. Memory is displayed, in hex, a byte
 at a time. You can type in :-
 1. Enter key. Proceed to next memory byte without modification.
 2. Valid hex digit pair. This byte replaces the displayed byte
 in memory.
 3. X. This cancels memory display/modify and returns to ZBUG
 command mode.
 You can use this command to modify the control bytes (print
 selector, etc.) within ZBUG, or you can modify your program's
 current registers by changing their saved values in the ZBUG stack.

J abcd Jump to address abcd. This changes tree flow of the interpreted
 program, and causes interpretation to continue from abcd.

R Return from ZBUG. Interpretation will cease altogether. Your
 interpreted-program will continue from its current point without
 interference. Valid only if ZBUG initiated by CALL entry.

S LL abcd Stop at address abcd. This adds another entry to the address-
 stop table which starts at location A + 047C (hex). If subsequent
 program flow executes the instruction at abcd, then a trace line
 will be displayed, with mnemonic label LL at the left, and program
 flow will pause.
 Note that each use of the STOP command adds 4 bytes to the end
 of ZBUG. So you must leave sufficient space at the back of ZBUG
 when you load it, for whatever table size you need.

Layout of ZBUG

 The first few bytes of ZBUG contain control values, as described earlier.
 The addresses down the left-hand side are in hex and are relative to A, the
 starting address of ZBUG.

 Addr. length

 0000 2 X '1842' Branch to real start point
 O002 1 X '80' Print Selector
 0003 1 X '80' Invocation Depth Limit
 0004 2 X '0042' Interpretation Address Limit (= 4200)
 0006 2 X '7C04' + A Address of address-stop table
 0008 34 ZBUG stack
 002A 2 AF Saved register. (can be modified)
 002C 2 BC
 002E 2 DE
 0030 2 HL
 0032 2 SP

 Video Genie and TRS-80 Level 2. RELOC

How to Load and Relocate a Southern Software Machine-Language Program.
--

 You choose the location of the program in memory, to suit your machine size. This MUST be in protected
memory, or the program will not run. So, taking account of your machine size, allow enough space for the program
itself, plus any other machine-language subroutines you may need, either above or below the program you are
loading.

 As an example, suppose you are loading Southern Software DLOAD (size 160 bytes). You have already loaded,
or are going to load, TRS KBFIX at the top of memory, and Southern Software TSAVE below DLOAD. Plan your memory
use as follows, working out the values (T) and (A) for your situation:

 PROG SIZE MACHINE SIZE
 (bytes) 4K 16K 32K 48K
Memory limit 20480 32768 49152 65536
Space for KBFIX 56 20424 32712 49096 65480
Space for DLOAD 160 20264 32552 48936 65320 (T)
Space for TSAVE 512 19752 32040 48429 64808 (A)

1)Turn on the computer. If you have a DISK system, enter Level2, not DISK BASIC.
2)answer the MEMORY SIZE question with your value of (A). (On Video Genie, this value is used after READY?).
3)prepare the cassette player to load the self-relocating program.

 TRS-80 You type:
4) > SYSTEM (enter)
5) *? DLOAD (enter) or your program name
6) After tape has loaded *? / (enter)
7) TARGET ADDR? Your value of (T)
8) READY

Notes:
1)At step 5 the tape will load and a pair of asterisks will blink on the display. If there are no asterisks, or
two unblinking asterisks, or C*, then there has been a loading error. Stop the recorder, reset, and retry with a
new volume setting.

2)At step 7, the program will relocate itself to address T. If instead of typing a value you just hit enter,
then the program will relate itself to A, the answer to the MEMORY SIZE question.

3)Under Level2, after relocation, the program is ready to be invoked with a USR(n) call, since the USR address
is automatically primed. However this does not work under DISK BASIC (or Level3), and you must additionally set
DEFUSRn to inform the system of this routine's address.

4)Once a program has been loaded and relocated, it can be dumped to a new tape using Southern Software TSAVE, or
TRS TBUG. Then it will load directly to its final location. Use of TSAVE has the advantage that several programs
can be dumped on a single file, which can also preprime the USR address.

5)During step 5, the program is temporarily load into locations 18944 and up. This means that
 a)You must perform all necessary relocating loads before loading a BASIC program, or entering DISK BASIC.
 b)The final location, T, of the self-relocating program can never be lower than 18960. (Hex 4A10).

6)If you run under DISK BASIC, then perform the initial self-relocating load under Level2, as described. Then
reenter TRSDOS (or NEWDOS, etc) and use the DUMP command to save the core image directly from its relocated
position. Subsequently you can LOAD the core image directly, under TRSDOS. But when you enter DISK BASIC,
remember to set MEMORY SIZE to leave this area of core protected, and remember that the top 64 bytes of memory
are corrupted by the DISK BASIC loader, and should not be used for programs.

 Video Genie and TRS-80 Level 2. HINTS

Hints on Tape Loading.

1) Listen to the tape to establish exactly where the data starts. Note this on the tape label.
2) Turn the volume down to zero, and "attempt" a tape load, very slowly increasing the volume until you get
asterisks on the screen. Stop the tape (not the computer), note the volume level, Reboot.
3) Turn the volume up to maximum, and "attempt" a tape load, very slowly decreasing the volume until you get
asterisks on the screen. Again, stop the tape, and note the vole,
4) Set the volume to slightly above the mid-point of the two extremes of volume, and attempt a real load.

Possible Tape or Recorder Faults.

1) Kink or fold in the tape. Even a minor fold may render the tape unloadable, (Southern Software tapes carry a
second copy of the file, in case the first gets damaged).
2) Noise caused by RESET when tape is running, Always stop the tape before hitting RESET.
3) Being small, all the plugs are prone to intermittent error and should be protected against movement.
4) Inconsistent tracking of the tape over the head.

 This list does not include poor tape quality, since it is very unlikely to be a problem, at the frequency
bits are recorded. However, you may have found that one make of cassette seems much better than another. This is
probably due to the construction of the cassette, rather than the tape. Generally more expensive cassettes run
more smoothly, and therefore reduce the chance of poor tracking of tape over the head.

How DATA is Recorded and Read.

 The computer contains hardware to generate an "above-and-below-zero" pulse, as shown below. This is fired
by direct program control. The output routine produces one such clock pulse every 500th of a second (by
looping). Data ones and zeroes are recorded as pulses halfway between these clock signals, A zero is the absence
of a pulse, a one is the presence of a pulse.

 The playback logic is analogous to a keyboard "debounce" routine, To read a single bit, start somewhere
near (A). Loop, until the hardware recognises a signal, at (B). This is a clock pulse. Now loop until that
signal is bound to have died away, and reset the hardware latch, at (C). Now wait an exact length of time, till
(D), and listen for another signal, YES, then it's a one, NO, then it's a zero. In either case reset the latch
after the sampling time, at (E), and loop again until the next time (A).

 As you can see, the TIMER must not be running during either record or playback, since exact looping times
are vital. Nor does the logic take time off to test the keyboard for the BREAK key. However tape speed is not
ultra-critical, since there is a resynchronisation wires at (A) on every bit.

